Екі айнымалысы бар сызықтық теңдеулердің қасиеттерін білу

Сабақтың тақырыбы: Екі айнымалысы бар сызықтық теңдеу.
Сабақтың мақсаттары мен міндеттері: екі айнымалысы бар сызықтық теңдеулердің жалпы түрдегі өрнегін жаза білу. Екі айнымалысы бар сызықтық теңдеулердің шешімдері болатын сандар жұбын жаза білу. Екі айнымалысы бар сызықтық теңдеулердің қасиеттерін білу.
Сабақта қолданылатын көрнекіліктер: кестелер, формулалар жазылған кесінділер, логикалық тапсырмалар.
Сабақтың әдіс - тәсілдері: көрнекіліктерді қолдану, практикалық жаттығу жұмыстарын орындату, диктант өткізу. Әңгімелеу, баяндау, практикалық сабақ.
Сабақтың типі: жаңа сабақ

Сабақ барысы:
• Ұйымдастыру кезең і
• Логикалық тапсырма шешу.
• Жаңа сабақты түсіндіру.
• Жаңа сабақты меңгерту есептерін шығарту
• Математикалық диктант өткізу.
• Жаңа сабақты бекіту.
• Үйге тапсырма беру.
• Сабақты қорытындылау, бағалау.
Оқушыларды түгелдеу, сабаққа дайындығын тексеру.
Логикалық тапсырма.
2 5 7 3 7 9
4 7 5 5 3 1
3 6? 4 5?

Оқушыларды зейінін сабаққа аударын алғаннан кейін жаңа сабақты түсіндіруді бастаймын.
Тақырыптың алдын ала тапсырмасында 3х+2у - 80 екі айнымалысы бар сызықтық теңдеуді шешу қысқаша келтірілді.
Берілген 3х+2у - 80
2у- 3х+8
у- 1, 5х+4
х1 болса, у2, 5
х2 болса, у1
х3 болса, у- 0, 5 осы берілген сандар жұптары берілген теңдеудің шешімі.
Мысалы, 3х+2у9, 7х - 4у8, - х+2у4 теңдеулері - екі айнымалысы бар сызықтық теңдеулер. Бұл теңдеулерді жалпы түрде жазуға болады: ах+вус
ах+вус түріндегі теңдеулер екі айнымалысы бар сызықтық теңдеулер деп аталады. Мұндағы х пен у - айнымалылар, ал в және с - қандай да бір сандар. Сызықтық теңдеудегі с бос мүше деп аталады.
Шешімдер жиыны бірдей болатын екі айнымалысы бар теңдеулер мәндес теңдеулер деп аталады. Шешімдері болмайтын екі айнымалысы бар теңдеулер де мәндес теңдеулерге жатады.
Екі айнымалысы бар сызықтық теңдеулердің қасиеттері:
1 - қасиет.
Теңдеудегі қосылғыштың табасын қарама - қарсы таңбаға өзгертіп, оны теңдеудің бір жағынан екінші жағына көшіргенде берілген теңдеуге мәндес теңдеу шығады.

2 - қасиет.
Теңдеудің екі жағын да нөлден өзге бір санға көбейтсек немесе бөлсек, берілген теңдеуге мәндес теңдеу шығады.

Екі айнымалысы бар сызықтық теңдеуді тура теңдікке айналдыратын айнымалылардың мәндерінің жұбы осы теңдеудің шешімі деп аталады.
№1426 оқушылар ауызша жеке жауап береді.
№1427 оқушылар ауызша жеке жауап береді.
І деңгейлік тапсырмалар.
№1428 оқушыларды тақтаға шығарамын.
Х- 1 және у3; х- 8 және у6 мәндер жұптарының қайсысы х+у2 теңдеуінің шешімі болады?
- 1+32; - 8+6- 2 1) шешім болады 2) шешім болмайды.
Оқушылар тақтада орындайды.
№1430 теңдеудегі у айнымалысын х арқылы өрнектеп, теңдеудің кез келген екі шешімін табыңдар:
Екі айнымалысы бар сызықтық теңдеу жүктеу



Ұқсас жұмыстар

Теңдеулер жүйесі
Бөлшек-рационал теңдеулер мен теңсіздіктерді шешуді оқып үйрету әдістемесі
Мектеп математика курсындағы теңдеулер мен теңсіздіктерді оқыту әдістемесі
“Алгебралық сызықтық теңдеулер жүйесін шешу” тақырыптары бойынша дәрістік, зертханалық сабақтарды жүргізуде қолданылатын әдістемелік құрал жасау
Математика пәнінен оқу құралы
Математиканы оқыту әдістемесінің жалпы мәселелерімен таныстыру
Бір айнымалысы бар сызықты теңдеу және оның қасиеттері
Теңдеулер мен теңсіздіктерді шешуге үйрету
Үшінші дәрежелі теңдеулерді шешу
Мәтіндік есеп және оны шешу
Екінші деңгейлі банктеріндегі валюталық операциялар
ЖАМАҚҰЛЫ БЕЙБАРЫС
БАРАҚҰЛЫ ЖӘНІБЕК
ҚР-дағы мұнай нарығының даму заңдылықтары және тенденциясы «Қазмұнайгаз» Барлау Өндіру» АҚ
Екінші деңгейлі банк клиенттеріне есеп-кассалық қызмет көрсетулер
Қазақстан Рсепубликасының екінші деңгейлі банктерінде бағалы қағаздар нарығын құру
ХІХ ғасырдың екінші жартысы
Есет Көтібаровтың хиуалықтарға қарсы күресі
Локомотив құралдарын қалпына келтіру, жөндеу және жаңаша жабдықтау «Жолбарыс» ЖШС-не қысқаша сипаттама туралы
Екі жақтан қоректенетін машина негізіндегі электржетегінің математикалық сипатталуы