Электронды - есептеу машынасының құрылымы, техникалық құрылымдарының өзіндік жұмыс режимі олардың сипаттамасы және параметрлерін оқып үйренуде физикамен байланысы

МАТЕМАТИКА КУРСЫН ОҚЫТУДАҒЫ ПӘНАРАЛЫҚ ҚАТЫНАСТАР
Пәнаралық қатынастар ұғымына сипаттама берілген, ғылым аралық қызмет түрлері көрсетілген, жаратылыстану-математикалық цикліндегі пәндерді оқытуда пәнаралық байланысты қалай жүзеге асыру айтылған, математика пәнімен информатика және физика пәндерінің пәнаралық байланыстары туралы ұғым берілген, дифференциалдық теңдеулерді биологиялық процесте қолданылуы көрсетілген.

Педагогикалық сөздікте пәнаралық қатынас түсінігін оқулық бағдарламаның өзара келісімі деп анқтаған. Пәнаралық қатынастар оқушылардың білімін жүйелендіруге көмек жасап және оларды нақты әлемнің толық жағындағы диалектиканың өзара байланыс құбылысын танып білуге қалыптастырады.
Пәнаралық қатынастардың әзірленуі оқушылардың білімінің ұтымды жағдайын, тәрбиеленуін және дамуының пайда болуына көмек көрсетеді.
Мынадай ғылым аралық қызметтердің түрлерін ажыратуға болады:

1. Бір объектті әр түрлі ғылымдарды кешендік оқытуда.
2. Әр түрлі объектті оқытудағы бір ғылымның әдісін басқа ғылымда қолдануы.
3. Әр түрлі объектті оқытудағы бір теорияны әр түрлі ғылымдарда қолданылуы.
Білім мазмұнын жаңарту пәндердің циклі үшін оқу материалы мазмұнының жоғары ғылыми, әрі оқушыға түсінікті деңгеймен оның ғылыми логикасына сәйкес баяндалуын қамтамасыз ететіндей жүйесін анықтау міндетін жүктейді. Бұл міндет циклдегі әр пән бағдарламасымен оқулықтың цикл пәндерінің терең өзара байланысын қамтамасыз ететіндей болып құрылуы арқылы шешілмек.

Ғылыми дүниетанымды қалыптастыру оқытылатын барлық пәндерді қамтитын күрделі үдеріс. Соның ішінде, әсіресе, жаратылыстану цикліндегі пәндердің, оқушылардың санасына әлемнің біртұтастығы туралы түсінікті қалыптастырудағы маңызы ерекше. Ал табиғат құбылыстары жайлы біртұтас ғылыми көзқарасты қалыптастыру осы пәндердің арасындағы өзара байланысты жүзеге асыру арқылы мүмкін болады.
Жаратылыстану-математика цикліндегі пәндерді оқытуда пәнаралық байланысты жүзеге асыру, әсіресе, осы пәндердің мазмұнын жаңарту жағдайында өзекті мәселеге айналып отыр. Себебі, бұл пәндердің өзара байланысы оқу материалының мазмұны мен оның өтілу ретін анықтаудағы аса маңызды белгісі болып табылады.

Пәнаралық байланыстар дегеніміз жаратылыстану-математикалық цикліндегі пәндер мазмұнында табиғаттағы нақты өзара байланыстардың реттеліп бейнеленуін қамтамасыз ететін дидактикалық шарт.
Оқу мазмұнын қалыптастыру барысында негізгі салмақ орта оқу орындарының барлық түрлеріне бағытталып, солардың әлеуметтік сұраныстарынан құралады. Оқу мазмұны педагогикалық категория ретінде әлеуметтік сұраныстың жай ғана көшірмесі болмауы қажет. Ол осы сұраныстың педагогикалық моделі болуы тиіс. Оқу мазмұнының қалыптасуының алғашқы сатыларында пәнаралық байланысты анықтау оқу мазмұнының құрылысында пәндік құрылымға дейінгі жалпы теориялық ой деңгейінде қарастырылады.

Математикалық ерекшеліктердің арқасында ол үшін пәнаралық қатынастардың жүзеге асырылуы өмірмен тәжірибенің, оқытудың байланысының қағидасы талаптарының бірі болып саналады.
Математиканы оқытудың мақсаттарының бірі, бұл оқушыларды диалектика - материалистік дүниетанымының қалыптасуы, мұнда оқушылардың нақты әлемді, диалектикалық өзара байланыс құбылысын түсінуге мүмкіншілік берудегі пәнаралық қатынас басты рөл атқарады.
Оқушыларды диалектика - материалистік дүниетанымға тәрбиелеуіне математика сабағында физика, химия ғылымдарымен байланысты есептер шығаруы көп көмек көрсетеді. Мұндай есептерді таңдағанда және шешкенде математика сабағында оқушылардың математикалық дайындығын ескеру қажет.
Пәнаралық қағидаларды жүзеге асыру оқу бағдарламаларынан басталады. Сондықтан алдағы уақытта осы теориялық зерттеулерді іс жүзіне асыру бағытында жұмыс жүргізілуі керек, ол үшін:

• оқу пәндерінің жаңарған мазмұнындағы байланыстыра оқытуға болатын неғұрлым маңызды, өзекті тақырыпты айқындау;
• оқу пәндерінің құрылымдық логикаларын осы пәндердің өзара байланысы тұрғысынан қарап, қажетті түзетулер енгізу;
• курстардағы өзара байланыстыра өтілетін тақырыптарды уақыт бойынша жүйелеу қажет.
Енді атап айтқанда математика пәнінің басқа пәндермен байланысын қарастыратын болсақ, қазіргі заманда кез келген пәнді тиімді оқыту үшін компьютерлік техника маңызды рөл атқарады және информатика курсы математика курсымен тығыз байланыста. информатиканы көп математизациялау қажет емес, себебі, информатиканы оқыту математикалық, есептерді шешуден шығады. Пәнаралық байланыс әр пәннің оқу процессінде үйретуші компьютерлік бағдарламалармен жабдықтандырылғадығынан оқу құралдарын пайдалануды байқалады.
Пәнаралық байланысты былай да көрсетуге болады:

1. Есептерді шешу барысында алгоритмді сипаттау және құрастыру, оларды іске асыруда математикамен байланысты.
2. Электронды - есептеу машынасының құрылымы, техникалық құрылымдарының өзіндік жұмыс режимі олардың сипаттамасы және параметрлерін оқып үйренуде физикамен байланысы.

3. Алгоритмдік тілдерді және электронды-есептеу машынасының тілдік жабдықталуы – лингвистикалық аспектімен байланысы, мәтіндерді шифрлау, мәтінді аппараттарды өңдеу және синтаксистік талдау, аударма жасау, сөздікті ұйымдастыру және сөзді іздестіру.
4. Бағдарламалау негізінен үйренудегі байланыс: лингвистикалық мәдениеттің қалыптасуы, ол ойдың қысқа және логикалық бейнеленуі, мәтіндердің негізгі және құрама бөліктерін көрсету, талдау жүргізу, бақылау, анықтамалық ақпараттармен жұмыс істеу.
5. Электронды-есептеу машынасын пайдалану заңдылықтары басқа пәндеріне компьютерді техникалық оқу құралы ретінде тиімді пайдалану қадамдары болып табылады.

Енді дифференциалдық теңдеудің биологиялық процессте қолданылуын қарастыратын болсақ, мұнда дифференциалдық теңдеулердің көмегімен жаратылыстану ғылымдағы ең негізгі проблемалардың бірі өзімізді қоршап тұрған табиғат құбылыстарының кейбір жасырын сырының қалай ашылғанын, оның өмірде қалай пайдаланылатынын көрсетуге болады.

Соның бірі, мысалы, дифференциалдық теңдеуді мекендес өсіп өну (популяция) санының қарапайым моделі ретінде көрсету жатады. Мекендес өсіп өну саны – қоршаған ортаны қорғаудың, яғни биоэкологияның ең маңызды мәселесі болып табылады. Мекендес өсіп өнудің математикалық моделін құру биологиялық түрдің сан жағынан өсуінің жылдамдығын анықтайтын есеп ретінде қарастырады. Егер мекендес өсіп өнуді жекеленген, қоректік қоры шектеусіз өсім басы ересек особьтардың санына пропорционал деп есептесек, онда мекендес өсіп өну санының динамикасы мынадай қарапайым дифференциалдық теңдеумен анықталады:
(1)
мұндағы – кез келген уақыт моментіндегі мекендес өсіп өну саны.
Алғашқы моментінде мекендес өсіп өну саны болсын десек. Сонда (1) теңдеу бірінші ретті сызықты біртекті болғандықтан оның шешімі былай болады:
(2)
Бұл теңдеу мекендес өсіп өну өсуінің экспоненциалдық формуласы деп аталады. Пропорционалдық коэффициентның қабылдайтын мәнінің әр түрлі жағдайына байланысты мекендес өсіп өну санының динамикасы да әр түрлі болады. Егер 0 болса, онда уақыт өткен сайын мекендес өсіп өну өседі; егер болса, онда ол бастапқы қалады; егер



Ұқсас жұмыстар

Vii-ix сыныптарда математиканы оқыту барысында пәнаралық байланыстарды жүзеге асыру
Бастауыш мектепте информатика элементтерін пәнаралық байланыс негізінде оқыту әдістемесі
Математиканың сызумен байланысы
Ms access-ті үйренуде компьютерді пайдаланудың алғышарттары
Биологияны оқытуда пәнаралық байланыстардың қызметтері
Оқыту технологиясының сәйкестендіру қағидалары
Қолданбалы бағдарламалық жасақтама. Электрондық кестелерді өңдеу құралдары
Мәліметтер базасын құру алгоритімі
MS Access программасын оқып үйрену және оны қолдану
Информатиканы орта мектепте оқыту әдістемесінің жалпы мәселелері
Аурудың тұрақтылығы және даму себебі
Коммерциялық ақпарат пен коммерциялық кұпия мәні және оны қорғау
ҚР «Халық Банкі» АҚ құрылымы
Жазаның жүйелерінің және түрлерінің жалпы сипаттамасы
Аудиттің мәні және оның нарықтық экономика жағдайындағы ролі
Адамдар арасындағы қарым-қатынас және іс-әрекет психологиясы
Жиынтық сұраныс және жиынтық ұсыныс,бұлардың кейнстік үлгісі
Агробизнес және агроөнеркәсіп интеграциясының арасындағы байланыс
Ақшаның маңызы, қызметтері және оның ерекшеліктері
Қабатты гидравликалық жару және ұңғылардың түптік аймаққа әсер ету