Пифагор теоремасының тарихынан мағлұмат беру
Пифагор теоремасы
Білімділік - Пифагор теоремасының дәлелдеуінің бірнеше әдістері бар екенін түсіндіріп, оны геометриялық есептерді шығару барысында қолдану дағдыларын қалыптастыру;
Дамытушылық - шапшаңдыққа, тапқырлыққа баулу; логикалық ойлау қабілеттерін жан - жақты дамыту;
Тәрбиелік - таза жазуға, сызбаларды ұқыпты орындауға,; мәдениетті, әрі көркем сөйлеуге тәрбиелеу;
Пән аралық байланыс: алгебра, тарих, әдебиет
Сабақтың жоспары:
1. Ұйымдастыру бөлімі
2. Оқушылардың жаңа сабаққа әзірлігін тексеру
3. Пифагордың өмірбаянымен таныстыру
4. Пифагор теоремасының тарихынан мағлұмат беру
5. Теоремамен жұмыс
a) мұғалім
b) оқушы ізденісі
6. Теореманың қолданылуы
a) есептерді шығаруға
b) есептерді дәлелдеуге
7. Тест өткізу
8. Сабақты қорытындылау, бағалау
9. Үйге тапсырма беру
Көрнекілігі:
Сызу құралдары (бұрыштық, сызғыш), интерактивті тақта, тест құрал, стенд: Пифагор портреті, тарихи мағлұматтар, тарихи есептер, т. т
Ауызша есептер үшін суреттер
Көпбұрыштың ауданы өткен материалды қорытындылау мақсатында оқушылардан тест алу.
1. Дұрыс жауапты анықта:
a) Тіктөртбұрыштың ауданы екі қабырғасының көбейтіндісіне тең;
b) Квадраттың ауданы оның қабырғасының квадратына тең;
c) Тік төртбұрыштың ауданы екі көрші қабырғасының екі еселенген көбейтіндісіне тең.
2. Көп нүктенің орнына керекті сөз тіркесін қой. Ромбының ауданы... көбейтіндісінің жартысына тең
a) оның қабырғаларының;
b) оның қабырғасы мен сол қабырғаға түсірілген биіктігінің;
c) оның диагональдарының.
3. S = а • һа формуласы бойынша қай фигураның ауданын табуға болады?
a) параллелограмның; b) үшбұрыштың; c) тіктөртбұрыштың.
4. Табандары а және в және биіктігі һ болатын трапецияның ауданы төмендегі формула бойынша есептеледі:
а) S= б) S= с) S=
5. Дұрыс жауапты анықта:
Тік бұрышты үшбұрыштың ауданы оның:
a) кез келген биіктігі мен катетінің көбейтіндісіне;
b) катеттерінің көбейтіндісінің жартысына;
c) қабырғасы мен оған түсірілген биіктігінің көбейтіндісіне тең.
Оқушылар, жаңа сендер қайталаған көпбұрыштың аудандарының қасиетін пайдалана отырып, бүгін геометрияның алтын қазынасы есептелетін “Пифагор теоремасы” тақырыбын өтпекпіз.
“Пифагор теоремасында” тік бұрышты үшбұрыштың гипотенузасы мен катеттерінің арасындағы тамаша қатыс тағайындалады.
Пифагор теоремасы тарихында тоқталайық.
- Ежелгі Мысыр мен Вавилон жазбаларында бұл теорема, Пифагорға дейін 1200жыл бұрын кездескен, бірақ осы теореманың дәлелдеуін б. э. б. VI ғасырда өмір сүрген грек оқымыстысы,(арифметика, геометрия, музыка, астрономия) Пифагор тапқан болатын. Және дәлелдемесін тапқанда 100 өгіз сойып, той жасаған,, құдайлардың құрметіне құрбандық берген деседі. Ал одан кейін теореманың дәлелдемелерін бірнеше ғалымдар тапқан. Қазіргі кезде 367 дәлелдеуі бар.
Айтушылардың сөзіне қарағанда ғылымның бұл саласын жоғары тұрғыдан зерттеп, қиқы - шойқы жерлерін түзеп, шалағай ережелерді ширатып, ақыл парасатына жүгіндіріп, үлкен ғылымға айналдырушы Пифагор болған.
Пифагор – гректің ерте замандағы философы және математигі. Ол геометрияны тек практика тұрғысынан ғана қарамай, оны логикаға негіздеп, абстракт ғылым ретінде қарастырған ғалымдардың бірі болса керек. Ұқсас фигуралар жайындағы ілімді жасаған, кейбір дұрыс көпбұрыштар мен көпжақтардың салу тәсілін тапқан. Пифагоршылардың аса маңызды табысы өлшемдес емес кесінділердің болатындығын тағайындау болды.
Қабырғалары 3, 4, 5 сандарымен өрнектелетін тік бұрышты үшбұрыш Египет үшбұрышы деп аталған. Египеттіктер жер бетінде тік бұрыш салып көрсету үшін, жіпті 12 тең бөлікке бөліп, 3 бөлігінен 1 түйін, онан кейін 4 бөлігінен 1 түйін салып, 2 ұшын түйетін де, сол түйіндерге қазықтар қағып көргенде жер бетінде тік бұрышты үшбұрыш пайда болатын. Мұндай үшбұрыштар көп болатын. Олардың қабырғаларын 5, 12 және 13; 7, 24 және 25 т. с. с сандармен өрнектеген. Осы сандар Пифагор сандары деп аталады.
Пифагор теоремасы
Тік бұрышты үшбұрыштың гепотенузасының квадраты катеттерінің квадраттарының қосындысына тең.
Пифагор теоремасын дәлелдеудің түрлері
Берілгені: ▲АВС(
Пифагор теоремасы маңызы
Пифагор теоремасының дәлелдерін қарастыру
Пифагор теоремасы
Математика тарихының кезеңдер
«Пифагор теоремасын басқа тәсілмен дәлелдеу»
Мектеп математикасының тарихи мағлұматтары
Теорема,оның құрылымы және түрлері
Оқушыларды дәлелдеуге үйрету әдістемесі
Geogebra-ның геометриялық ортасын қолданып дәлелдеуді оқыту
Математика тарихы және методология пәні
ҚР қоғамдық жаңа даму кезеңінде жоғары білім беру
Кәсіби бағдар берудегі оқушылардың тұлғалық ерекшеліктерін психологиялық зерттеу
XX ғасыр басындағы тарихи білім беру жүйесі
Қазіргі кездегі қазақстандағы білім беру жүйесіндегі проблемалар
Несиелік қатынас субъектілері қарыз беруші және қарыз алушы
ХХ ғасыр басындағы тарихи білім беру
Педагогика тарихында оқушыларға эстетикалық тәрбие беру жайлы ой-пікірлер
ҚР «Білім беру туралы» заңына
ГЕОДЕЗИЯ ТУРАЛЫ ЖАЛПЫ МАҒЛҮМАТТАР
гуманистік тәрбие беру