Перпендикуляр және көлбеу

Скачать

Геометрия: 7 сынып
Сабақ тақырыбы: Перпендикуляр түзулер. Перпендикуляр және көлбеу. Нүктеден түзуге дейінгі қашықтық
Сабақтың мақсаты:
Білімдік: Перпендикуляр түзулерді анықтайды, перпендикуляр белгісін біледі және оны дәлелдейді; нүктеден түзуге түсірілген перпендикуляр, перпендикулярдың табаны, нүктеден түзуге дейінгі қашықтық, ұғымдарын анықтайды.
Дамытушылық: Ойлау қабілеттерін дамытады, салыстыруға, ой қорытындылауға баулу, байқағыштығын дамытады;
Тәрбиелік: Өз бетінше жұмыс істеуге бейімделуді жалғастырады; пәнге деген қызығушылықтарын арттырады; тиянақтылыққа, жылдам ойлауға үйренеді;
Сабақ түрі: Жаңа білімді игеру сабағы
Сабақтың көрнекілігі: сызбалар, карточкалар
Сабақтың әдістері: сұрақ жауап, есептер шығару, баяндау,

Сабақ барысы:
Ұйымдастыру: Сабақтың мақсатын, жүру барысын айту, жұмыстық көңіл - күй қалыптастыру
Үй тапсырмасын сұрау

Жаңа сабақ:
Перпендикуляр, көлбеу, көлбеудің проекциясы ұғымдары
AB және CD түзулері О нүктесінде қиылысып, бір – бірімен тік бұрыш жасасын (57 - сурет). Сонда ∠ ВОD = 90 болады. Ол жазық бұрыштың жартысы болғандықтан, ∠DОА = 90, ∠СОВ = 90,. Бұдан ∠АОС = 90 - қа тең. Бұл жағдайда АВ және СD түзулері перпендикуляр болады.
Анықтама. Тік бұрыш жасап қиылысқан екі түзу перпендикуляр түзулер деп аталады.
Түзулердің перпендикулярлығы ⟘ таңбасымен белгіленеді. Мына a⟘b жазуы оқылады түзуі түзуіне перпендикуляр . Сонда АВ түзуі СD түзуіне перпендикуляр дегенді қысқаша АВ ⟘ СD деп жазамыз.
Перпендикуляр түзулерде жатқан кесінділер де, сәулелер де перпендикуляр болады. Яғни, 57 - суреттегі ОВ және О сәулелері сондай – ақ OE, ON кесінділері деп перпендикуляр деп есептелінеді.
1. Теорема. Бір түзуге перпендикуляр екі түзу өзара параллель болады.
Дәлелдеу. a⟘c Және c⟘b болатын a, b, c түзулері берілген. (58 - сурет). ∠1= 90, ∠2=90 және∠1 мен∠2 – ішкі тұстас бұрыштар ∠1+∠2 180. Сонда түзулердің параллельдік белгісі бойынша a||b болады. Теорема дәлелденді.
2 – теорема. Егер түзу параллель түзулердің біріне перпендикуляр болса, онда ол екіншісіне де перпендикуляр болады.
3 – теорема. Түзудің әрбір нүктесі арқылы оған перпендикуляр тек бір ғана түзу жүргізуге болады.
Дәлелдеу: Берілген a түзуінің бойынан (59 - сурет) кез келген О нүктесін алайық. a түзуі арқылы анықталған жарты жазықтықтардың бірінде ОА сәулесінен бастап ∠АОС = 90 болатын бұрышты өлшеп алайық. Сонда ОС ⟘ ОА болады. ОС сәулесіне толықтауыш сәулесін жүргізсек, түзуі анықталады. Демек, b⟘a
Енді О нүктесі арқылы өтетін және a түзуіне перпендикуляр бір ғана b түзуі болатынын көрсетейік. ОC сәулесі жатқан жарты жазықтықта ОС1 ⟘ ОА болатынын тағы бір ОС1сәулесі бар деп есептесек, ол түзуін анықтайды. Сонда ∠АОС1 = 90. Бірақ IV2 аксиомасы бойынша берілген жарты жазықтықта ОА сәулесінен бастап 90 - қа тең болатын бір ғана бұрышты өлшеп салуға болады. Демек, ОС1 сәулесі ОС сәулесіне b немесе b1 түзуі түзуіне дәл келеді.
Сонымен a түзуінің О нүктесі арқылы өтетін, оған перпендикуляр бір ғана b түзуі бар. Теорема дәлелденді.
4 – теорема. a Түзуден тысқары жатқан нүкте арқылы осы түзуге перпендликуляр бір ғана түзу жүргізуге болады.
Дәлелдеу. a түзуі және одан тысқары жатқан В нүктесі берілсін. (60 - сурет). В нүктесі арқылы a түзуіне параллель түзуін жүргіземіз. В нүктесі арқылы b⟘c түзуін жүргіземіз. Сонда c⟘a, яғни олар А нүктесінде қиылысады.
В нүктесі арқылы өтетін және a түзуіне перпендикуляр бір ғана с түзуі бар. Керісінше тағы бір с1 түзуі бар деп есептейік. Сонда а түзуіне перпендикуляр с, с1 екі түзу В нүктесінде қиылысып қалдар еді. Бұл 3 – теоремаға қайшы. Демек, В нүктесі арқылы өтетеін және берілген а түзуіне перпендикуляр бір ғана түзу бар. Теорема дәлелденді.
В нүктесінен а түзуіне түсірілген ВА кесіндісін – перпендикуляр, ал ВС кесіндісін – көлбеу деп атайды (60 - сурет). А нүктесі ВA перпендикулярының табаны, С нүктесі ВC көлбеудің табаны, АC кесіндісі ВC көлбеудің а түзуіндегі проекциясы деп аталады.
ВА кесіндісінің ұзындығын В нүктесінен а түзуіне дейінгі қашықтық деп те атайды.
Салдар. Параллель екі түзудің арақашықтығы олардың бірінің кез келген нүктесінен екіншісіне түсірілген перпендикулярдың ұзындығына тең.
Есептер шығару
Топтық жұмыс оқушыларды 4 - 5 топқа бөлу!
120. а және b түзулерінің қиылысуында пайда болған бұрыштардың үшеуі өзара тең. а ┴ b екенін дәлелдеңдер.
Шешуі. Қиылысқан а және b түзулері берілсін. Олар қиылысқанда пайда болған бұрыштардың үшеуін 1; 2 және 3 деп белгілейік. Шарт бойынша


Скачать


zharar.kz